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VECTORIZATION ON THE STAR COMPUTER
OF SEVERAL NUMERICAL METHODS
FOR A FLUID FLOW PROBLEM

By Jules J. Lambiotte, Jr., and Lona M. Howser
Langley Research Center

SUMMARY

A reexamination of some numerical methods is considered in light of the new class
of computers which use vector streaming to achieve high computation rates. A study has
been made of the effect on the relative efficiency of several numerical methods applied to
a particular fluid flow problem when they are implemented on a vector computer. The
method of Brailovskaya, the alternating direction implicit method, a fully implicit method,
and a new method called partial implicitization have been applied to the problem of deter-
mining the steady-state solution of the two-dimensional flow of a viscous incompressible
fluid in a square cavity driven by a sliding wall.

The characteristics of the Control Data STAR computer have been used in this study.
The timing of vector operations has been considered to develop order of computation con-
cepts foi the STAR computer.

Results were obtained on the Control Data 6600 computer system for three mesh
sizes and a comparison was made of the methods for serial computation. The methods
were vectorized for the STAR computer and expected timings were used to compare one
iteration of each vectorized version as a function of grid size. The methods which are
explicit in form are shown to vectorize better than the implicit methods in the sense that
they allow the use of large vectars in the computations. This advantage bec.mes less
important as the number of grid points increases. Two implementations of :he alternating
direction implicit method are presented, one of which uses a proposed parallel algorithm
for solving a tridiagonal system of equaticns. This algorithm is shown to possess unde-
sirable characteristics with respect to the STAR computer. Another disadvantage cf the
alternating direction implicit method, poor program locality in a paging environment, is
pointed out and a possible solution is proposed.
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INTRODUCTION

The introduction of the Control Data STAR vector streai .ing computer necessitates
the reevaluation of many numerical methods presently being used on a serial computer.
The relative efficiency of known methods may change when they are used on a vector com-~
puter. Also, new inethods will be, and have been, formulated for use on the advanced
computers. The process of organizing the data and calculations within a numerical method
so that the operations performed take advantage of the STAR vector instructions available
is referred to as the vectorization of the method. This report presents the results of a
study into the effect of vectorization on several numerical methods currently being used
for fluid flow problems. Also included in the study is a new method proposed for the STAR
computer.

A natural classification of finite-difference methods for a time-dependent solution to
a fluid flow problem is either as an explicit or implicit method. An explicit method
expresses the updated solution variable at each grid point at time t + At as a function of
previously computed information. These methods are relatively easy to formulate but
have the disadvantage of requiring a small time step to maintain numerical stability. An
implicit method expresses a relationship between all or some of the solution variables at
the updated time simultaneocusly; this gives rise to the necessity of solving a set of simul-
taneous equations. The implicit algoritams normally have no stability restricticns in
theory but are more difficult to use in an efficient manner.

The two-dimensional flow of a viscous incompressibie fluid in a square cavity driven
by a sliding wall was chosen as 2 model problem. Both explicit and implicit methods were
used on a serial computer (Control Data 6600 computer system) to obtain results for three
grid sizes. The methods chosen for this problem were the method of Brailovskaya (BR), a
two-step explicit method; the alternating direction implicit method (ADI); a fully implicit
method (FI); and a new method by Randolph A. Graves, Jr., called partial implicitization
(PI). After obtaining results on the serial computer, these methods, with some variations
and exceptions, were then coded for the STAR computer using a FORTRAN-like language
which has vector instructions. Timings were then obtiined based on estimates supplied by
Control Data Corporation. These timing . give a sample of the effect of veciorization on
the relative efficiency of the several methods.

SYMBOLS
ADI alternating direction implicit method

Ai j’B’Ci § coefficients in tridiagonal matrix
t4 $]
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BR method of Brailovskaya

Di,j’Ei,j’F’Gi,j’Hi,j coefficients of finite-difference equation for gi,j

s s s i b e eana b et Aot wvavm el — s

DV(M) degree of vectorization by approach M

Dx; 5= V141, " Vi-1,j

Dy; 5= ¥1,541 ~ ¥1,5-1

v

s
s g o £ abe

! Np . At
Re
dxirj = 4 Dxi’j
N,_ At
= . e
4v4,5 Dy s
FI fully implicit method
g amplification factor ;
h spacing between grid points
1 column number in ADI formulation
. e
i,} grid location
J row namber in ADI formulation
K ’ time step
k order of the number of vector computations

Ki,j’l i, j’Mi,j’Ni,j’oi,j quantities in  PI solution (eq. (19))

————— ——tw

% kpkz constants : -
; L number of results per clock
A order of the average length of 2 vector
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}
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TA} length of vector
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M a particular vectorization approach
m ) number of serial computations
N=n+1
n ‘ number of grid lines in each direction
NA:n(ligzn-I)+1
logz n
NRe Reynolds number
O, (k) vectorization of a task in which O(k) vector operations are performed
involving vectors whose average length is O()
pI method of partial implicitization
RD Stone's algorithm
RT repeated tasks
Ri, j right-hand side of tridiagonal system of equations
8 vector startup time in clocks
t ST implemeniation of ADI using Stone's algorithm
i T vector timing in clocks
t time
u, velocity of sliding wall
x,y coordinates
L4 vorticity
E vorticity at intermediate step
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STATEMENT OF THE PROBLEM

The problem chosen was to find the steady-state solution for the flow of a viscous
incompressible fluid in a square cavity driven by a sliding wall as shown in figure 1.
+ Since it was the purpose of this report oniy to compare several methods when applied to a
representative problem, this particular problem was chosen because of its relative sim-
plicity and the availability of previous results (refs. 1 and 2).

The governing equations are written in a time-dependem form and the solution pro-
cess is a time-marching procedure to the steady-state solution. By introducing the
stream function Y (x,y) and vortieity {{x,y), the governing equations become, after suit-
ably nondimensionalizing and scaling the tirae by a factor Np,,

R e BT AR U YUT LIS SR VS Y R

vy = ¢ )

% ap\ (2L | *’_*P) X\ - v2

e )5 - F)E) - @

v=0 (for all walls) (3a) ;

i (for stationary walls) (3b)

E 2 %
N % = -1 (for moviag wall) (3¢c)

e £8 -

The value of 100 is used for the Reynolds rumber in ail computations.

The boundary values for { are computed from equation (1) and the boundary con-
ditions for . (See refs. 1 and 2 and the discussion on pp. 6 and 7 for more complete

H details.)
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SERIAL SOLUTIONS

Several methods were used on a CDC 6600 computer io obtain results. The unit 1
square was divided into an equally spaced n by n grid network and the differential
equations (1) and (2) were expressed in a finite-difference form. In all methods, central
differences were used for the discretization yielding an O(hz) spatial approximation to

the original equations where h = T i I For example, §
ax,y.) - ¥(x; - Ax,y; ;
8y _¥m +amy) ¥ (x i) n
Heem) - ol o
In the notation used herein (fig. 1), t
Wy,5 = VA, 1Y) = Y(ih, 1) ) §
so that equation (£) becomes %
i
% 7 i

-8_‘1_1 = i+1,j i-1,j N O(hz) (5)

exl; ¢ 2k

Similarly, the Laplacian operator becomes

Yie1,5 F¥i-1,5 + Vi je1 ¥ 51 - ¥,
T e T >+ ofn?) ®

For the purpose=s of this report, the Poisson equation (1) was considered to be an
auxiliary equation and was solved in an identical fashion for each metbod; therefore, its
solution time was not included in the timings presented. It was solved in all cases by a
fully implicit method. This involved the solution of a positive defijpite banded system of
equations and was achieved with a banded Cholesky decomposition scheme.

Figure 2 shows the program flow chart. The initial CO was taken as n copies
of a vector which was ordear of msnitude correct with the results of Mills (ref. 1) at the
center line of the grid. For a given estimate of CK, equation (1) can be solved for sz
(originally K = 0). Now ¢K+1 ¢can be computed on the four boundaries. Let
N = n + 1; then, the four toundary equations are as follows:

[P,
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.k
¥
Right boundary, :
“2ny | ?'
N, = —z“‘ih (a) 2
Left boundary, }
s 81 . :
CO,j hz ¥ (7b) :
Lower boundary,
-2
_ i1
L'i,o = ——-hi‘— (7c)
Upper boundary, ‘ -
(1) S

=2
SLN = 12 (b - ¥y n-1)
These equations are derived by assuming the existence of an imaginary point cutside the
boundary and using the governing equations at the boundary to eliminate it. Figure 3
tllustrates this procedure for the right boundary.

The computation of §K+1 at the interior points is now performed by one of the
previously mentioned methods. The finite-difference form for equation (2) is ;

K+1 K ’
8,7 - Sig [Dyi,i ("m,i - Ci-m) D"i,j(‘i,m - ci,s-l)}
et NRe -
At 2h 2h 2h 2h

L e SRS L L R SRS

h2 h2 @®

where |
Dy; 5= ¥4 5+1 ~ ¥1,5-1

Dx; 5= ¥ie1,5 = Vi-1,§

The time superscript has been deliberately deleted from the vorticity ¢ since thisisa
function of the various methods., All ¢ values are assumed to be wK.
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Brailovskaya's Method
Brailovskaya proposed a two-step method in which intermediate vorticity values

;K;' 1 are computed from equation (8) by using { from time step K (see, for example, ,,
%

ref. 3) and then the intermediate values are inserted into the convective terms. The equa-
tions for this problem become i

K41 _ At K K K K K
&y =y 'z(ciq,j it ¥t St ci,j-1)

Npe &

=€ _ K K !
g [(DY1 i- 1)(§1+1,i Ci-l,j) (Dxl,j)(’;i,j-i-l - gfj_l)] " ;
f K+1 At K K K . LK K ‘
| S AR Y "(gi*l’i Pl iyt G ‘:i,j-l)

_ Ny, At -
R Kel gK+1 K+1 _ K+1
" [(Dyz j-1) (’;1:1 57851 j)'(Dxi,j)(ci,;;-l &5y 1)] (10)

T wy .

, Brailovskaya's method (BR) 1s an explicit method and is stability limited. Carter
; (ref. 3) has analyzed the stability of BR on the Navier-Stokes equations. Adapting the
present prcblem to his analysis yields the stability criterion

L N

At £ 0.205h2

The method iiself is comparatively simple to implement, Note that the work
involved is O(nz) per time step since equations (9) and (10) are evaluated for each of
the n2 grid points,

Alternating Direction Implicit Method

The alternating direction implicit method (ADI) uses two difference equations at
each point in alternate sweeps through the grid (ref. 4). At t = 2K + 1, equation (8) is
written, a row at a time, with spatial derivatives implicit in the x-direction and explicit
in the y-direction. Thus, equation (8) becomes

2K1 2K . Atl/.2K+1 2K1 2K+ 1) 2K !
8y =8yt [(';Hf: 25" +§1-1+j) (Ci,jn'z’;ij +e2% )]

N, At
Re 2K+1_ ,2K+1 2K
- 4h2 Dyi,j(cx-i-l j -8t ]) Dxl,](cl,j-i-l §1 ,i-1 )] (11)
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Multiplying by hz and gathering terms yields from equation {11) a system of equations
for each horizontal line of points in the grid. Now, let y = J Ay for the Jth row. Then,

F B €15 ;3?17 Ry 3
A2 B Ca5 B35t | ryy
As; B . .
R 1 (12)
. . Ca-1,3
2K+1
L A B JL cn,-; ] _RHJJ
wihere if [
N, _ At
Re
axy,5 = x5 (12a)
Ny, At
. " Re
dyy,5= —¢ D9y (12b)
then,
~(2at + n?) (12¢)
Ai:J = At + dyi I (12e)
2 2K
Ra=%, PR (eat - n2) 4 & J+1( -At - dx; g+ gg-(-at + dx; 3) (12f)

Both R 1 and R have an extra term since differencing about ¢ 1,5 and Cn J
includes the known values 01 the left and right boundaries, respectively. They are modl-
fied from equation (12f) as follows:

2K+1
R g=Ry5-%,0 41,7 (12g)
_ 2K+1
Ry 3= By 5-%451,5%,5 (12h)




B e e e b E Vs TR MR g AN Py B
'
]

e I — . et 3 YR T S S T AT
; ' Sl L S : Rl
.‘ ' ) ,'. I s 3 ; . ;
’_.‘.__ A—iL . __._.-....__.'i e e e rmm——t v s i — H ..—»i
:l 1
' This system of equations is often solved by Thomas* algorithm, which is equivalent
' to a2 Gaussian elimination factorization of the matrix without pivoting. The steps of the
algorithm, dropping the J subscript for simplicity, are
, {
wl =B A
Q= Rl/wln i
Ri-ARy 3
Q== ) 4=23,...,0-0) ) (13a)
Py = Cslv; ]
Wn=B-AP,
Q, = R, -AG, (
" J !
Then, '
)
8= S ‘
, ; (13b) ‘
Cj = Qj - chj'!-l (j =n-1,n-2,.. ., 1) J ,
¢
For each row of the grid (J= 1, 2, . . ., n), a similar structured uystem ic generated
which is similarly solved, Each row is solved independently of the other. This fact is
taken advantage of when the solution process is set up for the STAR computer.
When the direction for the next time step 2K + 2 is alternated so that the implicit-
ness is in the discrelization of the derivatives in the y-direction, the following equatioxn, :
which is similar to equation (8), is obtained: i
i
_i
4
!
}
{
}
10 3
}
: i
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(2K+2 _ §2K+1 Z[@zxn 2e2K+1 , (2K+1 (2x+2 2§2K+z 2K+2)]

i,j 1] i+l " 285 * a1 85, 5+1 85, §-1
N, At
_Nge [o2K+1 _ ,2K+1 2K+2 _ 2K+2)'l
——lmz Dy, Sivi - Siong)” PR (Eht - it )) (14)
Now, the equations for the Ith column (that is, x = I Ax) become
B Cry i R
A2 B Cr2 sz,l?z Rya
A3 B
. ; ) S (15)
cl,n-!
i Ma B[R] [P

wheze using equations (12a), (12b}), and (12c)

CI,j = At + dxl,j 15a)
Apg= at-dxp, (15b)
Rp ;= gI’j“(zm h ) + ;Ifl"jl(m + Dyx,j) + g?xl"j ( At - DyI’j) (15¢)
Modifying as previously yields
- Ry, -2 (150)
2K+2 - ’ (15¢)

R n=RI,n gIn+1 Ln

The amount of computation involved in the solution of equation (12) by Thomas"®
algorithm is O(n) und, hence, the compuiation per time step for the n systems is
O(nz). The changing of directions presents added programing co:xplexity but the alterna-
tion of direction is necessary since it is this process that gives tlie unconditional stability
after two equal time steps.

Performing a linearized stability analysis (ref. 4) for this problem resuits in

2K+4
Pyt = ey

s T

e e v e mba ewmeda R
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The amplification factor g is given by

k, Ax Ay
(1-4psin2 L )—2iolsink1Ax {—(1-4psin2k22 )+2iazsink2Ay

gz

1 2k &x 2t0. Bi: 2k &y
+ 4p sin 3 ¥+ wlsmkle 1 + 4psin =5 -Zicrzsinszy

where k1 and k2 are constants and

AtN, AtN,
At - Re =% __Re
A TR B % = 3%~

The Von Neumann condition for stability is (g} £ 1. This condition is satisfied since g
is composed of two factors and each factor is of the form

f:g'._?_&
e-~-ib

where |a| £ lel. Hence, it can be shown that [i]s il

Fully Implicit Method

For the fully implicit method (FI) the values of & i in equation (8) are taken at
2
time K + 1; this results in the following equation for the i,j point:

K+1 K+1 K+1 K+1 K+l _ _:2.K
Dy 5 8it1,5 * By y Sia,5 * Oy Shen * By Spgey + F oy = 0¥y (18)
where
a~ = = - - 2
Di,j = At + dyi,j Gi,j At + dxi,j F 4At - h
By = A0 9y, S Il ®

Equations (16) satisfies the Von Neumann condition for stability since here the amplifica~-
tion factor g is

g= 1 amn
k1 Ax Ay

1+ 4p(sin2 — + sin2 k22 ) + i(ch sin k; Ax - 20, sin k, AY)

and clearly [g! £1 since g isofth:form g= = -i-lib where a Z 1.
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The use of FI introduces several computational burdens. The resulting matrix is

by n? and when a row by row ordering scheme is used, it becomes a banded matrix,
This matrix is said to have a bandwidtk of n and when banded programing techniques are
used, the order of computation is 0(n4) and the required storage is 0(n3 which is
considerably higher than that required by ADI. It should also be noted that although the
band itself is sparse, it quickly fills so that after the elimination of the first n variables
(one row) the submatrix for the next n variables is full. Thus, it is not possible to take
advantage of sparsity within the band. Figure 4 shows the band structure and the fill that
occurs after the first n variables are eliminated.

The reasons FI was considered in spite of these disadvantages are as follows:

(1) Recent advances in sparse matrix theory reduce these computation and storage
figures to 0(n3) and (Z)(n2 logo n), respectively. (See ref. 5.)

(2) The solution procedures for the tridiagonal systems in ADI appearea A
nonvectorizable,

(3) It was considered possible that FI might have better convergence properties
than ADI (require fewer steps to reach steady state).

Method of Partial Implicitization

The method of partial implicitization (PI) has recently been proposed by Graves
(ref. 6). In this method he has been able to express cn}-l explicitly in terms of past
information and at the same time retain the stability chdracteristics of a fally implicit
method.

The derivation for the stated problem proceeds in the following manner. Observe
from equation (16), which is repeated for convenience,

K+1 §K+1 G

K+1 K+1 K+1 _
Dy 58i-1,5 * i+1,j * +H; 3851+ FSy = -b ‘515

i, 51,j+1 i,5-1 + F&j

that the five grid points included in the general equation form the familiar star or cross
pattern with §; . at the center. Based upon the presumption that it is these four neigh-
bors that exert the most influence upon the solution at that point, the general equation for
each of the four neighbors is also written. References to grid points within the star for
(i’ are made implicitly, whereas those outside are expressed explicitly. The resulting
five equations can ke expressed in matrix form as follows:
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where
K 5= "hz‘»fju =Dy j+1 §§1,j+1 =K 41 §§-1,j+1 -G i1 §§j+z
Lij= 'h2§¥-1,j -Diyg ‘5?—2,1 - Gi_1,5 §iK-1,j+1 -Hi1j ‘;51,1-1
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Matrix equation (18) is solved for §¥j+ 1 by using Cramer's rule. The resultis
3

] M ; - (Ni’j Eyy+0; H;+ L ;D +K G j) o

2
P2 - (B3 Pan,g * By Ot * g Bicng * Gy Higo

K+1
&)

Equation (19) can be used for all the interior points except the points adjacent to the
boundary. Although it is possible in such a case to simply remove the equation for the
boundary point from the system and rederive the expression for § +1 , it is desirable
for the vector operation of the STAR computer to maintain formula. (19) for all points.
This objective can be accomplished by modifying some of the appropriate constants in
matrix equa.tmn (18). For example, let C . be a point adjacent to the top boundary.
Then §i K +11 is known. The resulting four equations to be solved can be expressed in
the same format as matrix equatlon (18) as follows:

D, [T

—
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where the following changes are made to arrays of coefficients and right-hand-side con-
stants given in matrix equation (18):

K nrad

First,
- _ K+l -
Mg = Mig - Sige G (20a)
then,
Gy =0 (20D
- 3
Hi,j S ] {20¢)
LK+1
: Ki5= 8,5+t - (20d)

The system of matrix equation (20) is now correct for the point near the boundary
and equation (18) can be used for this point also. Similar logical changes canbe made for
* points near the other boundaries and near the corners. The amount of computation for
Pl is O(nz) but requires about twice as many operations as ADI; however, the explicit
nature of PI allows it to vectorize much beiter than ADI on the STAR computer and, in
fact, the simplicity of the PI form may make it popular on a serial computer,

The stability of this method has been verified for the two-dimensional heat equation

and by Graves for Burgers® equation. The grid sizes run for this problem showed no sta-
bility constraints and in fact demonstrated a seemingly complete insensitivity to At.

Results of Serial Computations

The results from the comput:.tions done on the CDC 6600 computer using the fovr
methods are presented in table I, The best results are reported for each method. The
following observations can be made regarding these results: ‘
- 15
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(1) Despite the fact ttat the FI took fewer total steps to reach convergence, its
large computation time heavily negated this slight advantage. Since it did not show any
great advantage over the other two stable methods, it will be omitted from consideration

(2) ADI and BR took approximately the same amount 6f time per step and PI
required about twice that amount.

(3) Neither PI nor ADI greatiy reduced the total number of steps to convergence.
On the average they took about one-third as many steps. Interestingly, PI had the
characteristic of being insensitive to the size of At selected if At was greater than
some number, For any At larger than this value, steady state was reached in the same
number of steps. ADI always reached a point at which a larger At would cause the H
results to diverge toward infinity. %

(4) As n doubled, the ADI, BR, and PI methods required about four times as
many steps. H

(5) Of the three methods under consideration, ADI performed the best and PI and
BR performed about the same.
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VECTORIZATION OF THE PROBLEM

L A U W

General Characteristics of Vector Timing

The STAR computer obtains an effective increase in computational speed by stream-
ing consecutively stored data from the memory, through pipeline processing units, and
back to memory so that the elapsed time between ihe production of successive results is
much less than the time frcm beginning to end of any one computation. This process
requires that the data be organized intc a ector format (that is, stored in consecutive
locations in memory) and that the computations use STAR vector instructions.

Since a comparison of different vector implementations is desired, it is necessary
to first look at the general {iming for a vector operation and understand its implications.
The general form, given in clocks (1 clock = 40 nanoseconds), is

l!

T=S+i._

where

. T - time for operation, clocks

s startup time, clocks A

A length of vector

L number of results per clock
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3 Some representative STAR timings are given in table II, These timings are based on 2n
: unpublished preliminary STAR timing summary (Aug. 1572) supplied by Control Data
Corporation and, inasmuch as they are preliminary timings, are subject to change.

The startup time represents an inefficiency in the use of vector instructions.

Obviously, the timing is best for a particular computation if it is8 performed with long
vectors and few startups, if possible,

Since the timing for a computation depends not only upon how many results are gen-
erated but also on whether they were performed with a few long vectors or with many
short vectors, it is convenient {0 introduce some notation and definitions to describe the
vector implementation in an order sense.

Presume that there is a2 computational task to perform which has associated with it
r a parameter n which in some w2y characterizes the size of the task. In discussing
) quantities related to the computation of the task, the concept of order of magnitude at
infinity with respect to n is used. Specify that f(n) = O(g{n)) (readas "f and g

are of the same order of magnitude for large n")if lim f(n) exists and lim fn) _ K
N0 g(n N> g(n)

a—vr

where O<K < wo,

For compaciness of notation n is suppress«?iand f = O(g) is written if the param-
eter involved is clearly defined. Note that jin the statement f = O{g), g is not uniquely
defined by f; that is, 5n° + 6n2 + 12 = O(5n3 + 6n%) = 0(5n%) - 0 (10n°) = o(n).

In the examples given herein, the simu.es. expression is always used; that is,
3 2 ~ ( K]
5n” + 6n° + 12 = O\n" ).

© oy ey At R A e

Consider now the impiementation of the presumed computational task. In the fol-
lowing discussion, m, I, and k are assumed to be functions of n, and the usual imple-~
mentation that carries out the computations on a serial computer oxr on the STAR com-
puter without vector operations (referred to as the scalar mode) is assumed to require
O(m) calculations. There may be many vector implementations (vectorizations) of the
task and it is assumed that a particular vectorization M requires Of(k) vector opera-

tions whose average length is O(). The vector order of computation of such a vectoriza-
tion M is denoted by b‘l(k).

Definition: The degree of vectorization by vectorization M, denoted by DV{M), is m/k.

Again, since m and k are not unique, DV(M) is not unique, and DV(M) can
be any f(n) which is O(m/k). As before, the simplest form is used.

PP R

On an ideal parallel computer {one which has an infinite number of prccess-ors
which operate in parallel), DV(M) could be called the speedup r itio. On the STAR com-
: puter, DV(M) is only an indication of the speedup.
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Definition: Vectorization M is a consistent vectorization if Ik = O(m); otherwise,
it is called inconsistent.

An inconsistent vectorization is hence one that produces a higher order of total
results than the serial algorithm it replaces. Since the high-order term for the timing
of the scalar algorithm is klm and for the inconsistent algorithm is kzlk (for some
constants k1 and k.,), it is guaranteed that as n - =, the scalar algorithm becomes
better than the vectorized algorithm. Naturally, the value of n for which this happens
depends upon the coefficients .nvolved and the relationship between kI and m. There
are examples of parallel algorithms proposed whicn, if vectorized, would not be consist-
ent. They are designed with the ideal parallel computer as the model and assume that
timing is proportional to the number of vector operations involved and independent of the
length of the vectors. This assumption is not valid for the STAR computer. However,
there may be regions of vector lengths where these algorithms can be useful but with
reduced gains. The recursive doubling algorithm of Stone (ref. 7) is an example of an
inconsistent vectorization and is discussed in more detail subsequently.

A consistent vectorization is considered to be optimal if nere is no other consistent
vectorization of the task whose degr<ce of vectorization is of higher order. Certainly this
is true of vectorization M if DV{M) = m. Ii should be emphasized that the term
"optimal'™ refers only to the vectorization of the particular task in question. If that task
is only a part of the overall solution procedure, then an approach in which that task vector-
izes optimally need not be the best approach to take. For example, if the vectorization of
several iterative methods is considered, and specifically the vectorization of the computa-
tions invol -ed in one iteration of each method, it is possible that one iteration of a method
with poor convergence rates can be vectorized optimally, whereas a method with good
convergence rates may have a vectorization of lesser degree. The method with the opti-
mal vectorization is not necessarily the best approach to use since it requires more

iter_ations.

To illustrate the use of these terms, consider the vectorization of two approaches
for addingtwo n by n matrices, namely,

C=A+B

Himte SNV

Vectorization M1: Let each column of the matrices be a vector. Then, n vector adds
of length n yield

2
T1=n(33 +§) = 33n +£2-

This vectorization is O_{n), and DV(M ) = EE =n
nv 1 - n TR
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Vectorization M,: Treat the whole matrix as one vector of length n2. Then,

2
n
T2=33 +7

— 2
This vectorization is O(1), and DV(M,) = E= n?. Note that both M, and M,
vectorizations are consistent and M2 is optimal.
The following features about timing are illustrated by this example.
(1) The serial orde: of computation O(nz) is reflected in both timings.

(2) Vectorization M, is superior to M; because it has fewer startup times.
Note, however, that this difference shows up in a lower order term of the timing., There-
fore, as n - =, the two vectorizations become essentially equivalent in an order sense

T
since i 1. For smaller values of n, the lower terms are more important and

To
T
.—l - N,
T2

(3) Since scalar timings for an C(nz) task would be T, = kn2, it has no lower
order terms and for small values of n could be competitive with vector operations.

(4) For consistent vectorizations, DV{(M) is a meaningful rough comparison of the
vectorization in terms of computations.

In many applications it will be possible to specify or describe the efficiency of the
vectorization of subtasks of the total problem but very difficult to determine the best
approach to the overall solution of the problem. For instance, in the problem in this
report, the 2mphasis has been on comparing the vectorization of the task of advancing the
solution o~ . step in time. The methods can be compared on this basis, but to specify, in
general, v best mnethod when one considers the total number of steps required for each
method is difnicult, if not impossible, and usually quite problem dependent. Therefore,
results have been given in terms of what is reasonably constant for most problems of
this type, namely, the computation time require * to perform one step toward steady state.
Results will be given for total solution time for the three grid sizes computed on the CDC

6600 computer.

The vectorization of the various methods for this problem provides an excellent
cross section of the philosophies involved in the selection of a method for the STAR com-
puter. Firsi, there is BR which runs slowly on a serial computer but vectorizes opti-
mally. Thep, there is ADI which outperforms BR serially but seemingly does not do
well on the STAR computer because of the serial nature of the solution of a tridinsonal
system. Two vectorizations of ADI are presented in this report. The first ixapl:men-
tation ST utilizes a new parallei a:gcrithm by Stone which was formulated w solve each
tridiagonal system in a parallel fashion. This vectorization is found to be inconsistent.

19
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The second implementation invelves no new mathematics but only the recognition that the
n tridiagonal systems are identica: in form and independent of each other. Thus, the
standard algorithm of Thomas can ke used to solve all n systems at the same time.
This approach is referred to as RT ‘or repeated tasks. In this implementation, the
importance of data storage in STAR is ¢emphasized. Finally, there is PIL This stable
method is particularly well suited for the STAR computer since the solution is computed
by an explicit-type formula which vectorizes very effectively. The vectorization of PI
and BR demonstrates the importance of zontrol vectors.

Each vectorized version is compaied with the others through estimated STAR
timings. The relative speeds of the se~torized versions are compared with the relative
speeds of their serial counterparts ic den.onstrate the effect of vectorization on the meih-
ods and also to quantify some of the order concepts developed earlier in the report.

Assumed FORTRAN Extensions

The programs presented are coded in a FORTRAN-like language with extensions for
Yector operations. Since the language which will actually be used has not been finalized,
the code given here is only presumed to be representative of the final version. Several
liberties will be taken with the code in order to make it more readable. Thesc will be
pointed out. A description of the FORTRAN extensions used follows.

Implied DO

A sequence of elements from 2n array A can be specified by an implied reference
A{M1:M2:M3) where M1, M2, M3 have the same meaning as they dc in the DO state-
ment DO 50 I= M1, M2, M3, All vector operations must involve consecutive loca-
tions in core. Therefore, it is presumed that the reference A(I:J), which represents
A(), A(+1),. .. A(J), will generate vector operations, whereas A(I:J:2), which repre-
sents A(I), A(I+2),. .., A(J), will generate scalar code. It is alsvu possible to use
implied DO references within mu!tidimensional arrays as long as the reference occurs
only in one of the indices, for example, A(L,1:M) or A(1:N,J). Note also that if the
STAR computer stores arrays by columns first, then the latter reference is to consecutive
locations and therefore can be considered to be a vector, whereas the former reference

cannot,
BIT
BIT is a type statement identifying a variable or array of variables each to be one
bit long.
CTRL

The STAR computer has in its hardware instruction set the capability to use a con-
trol vector with its normal vector instructions. The control vector is a string of bits
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where each consecutive bit corresponds to a consecutive element of 2 vector generated or
computed in some vector operation. If a bit is a 1, the corresponding element of the
result vector is stored. If the bit is a 0, this computation is not stored but merely dis-
carded. The assumed FORTRAN code to use this feature will be

A =B .CTRL. (EX)

where EX is an expression giving rise to an array or vector of results, and B is a bit
vector declared in the BIT statement. As an example of its use, consider the following

program:
DIMENSION A1(6), A2(6), C(6)
BIT B(6)
C =B .CTRL. (Al + A2)
END
Assume that Al, A2, C,and B have the following data before computation:
c =[2,2,2,2,2,2]
A1 =[3,3,3,3,3,3]
A2 = [4,4,4,4,4,4]
B = [1,1,0,1,0,1]
Then after computation,
c = [1,7,2,7,2,7]

This feature is desirable in boundary value problems because it allows one to include
the boundary points in the arrays of variables and thereby form a vector which includes
all grid points. One can then use this long vector in an expression which is valid for the
interior points, but ot for the boundaries, and yet which does not destroy the good infor-
mation at the boundaries by overstoring it with a quantity computed using an invalid

equation.

Two-dimensional arrays are assumed to be stored by the STAR compilir by columns.

For clarity in reading, the capability to reference a two-dimensional array as if it were
singly dimensioned is assumed.

Vectorization of Brailovskaya's Method

The equations for BR are of the form
(K"'l F J; .o‘;.K .+E..§K .+H..§K. + G, § - be
i,j ,J i-1,j i,j *i+1,j i,] 171'1 i,j 1’]+1 j= 1,
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Since each value of vorticity and each coefficient used in the right-hand side of the
equation are the result of a calculation at the last time step, it is possible to perform the
calculations with vectors of length n2 by using the following procedure. Let Z bea
FORTRAN array containing the values for time K. First, compute the coefficients F
using vectors of leagth n2 and store the result in the array F. Next, periorm the vector
multiplication F*Z and store the result in the temporary vector T1. Similarly, compute
D*Z with the proper offset in Z and store in T2. Then,add T1 and T2, Continue in
this fashion until .ne entire equation has been computed. This vectorization is obviously
6n2(1) and is an optimal vectorization for the task. The coding in appendix A does not
perform the computations in precisely this order since it is possible to take advantage of
similarities in the two steps of BR.
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The STAR FORTRAN coding uses vectore of length n2 with the siorage arrangement
as shown in figure 5(a), where the elements are stored consecutively by columns beginning
in the lower left~hand corner. The grid as shown in the figure includes the boundaries so
that all the information needed tc compute the interior points is contained in the vector.
All the vectors needed in the computation are used in this manner and since it is necessary
to give the starting and the ending location of the vector, the proper offsets must be com-
puted for the vector instructions. This is done at the beginning of the coded example. To
compute the first result, 2Z(MC), four points are needed. The subscripts of these points
are used as the beginning subscripts for the implied DO notation. The last result com-
puted is Z{NC). The subscripts of the points it needs are used as the ending subscripts
in the implied DO notation. The results are computed in order from Z{MC) to Z(NC).

A bit control vector is used to prohibit storing results on the boundaries. The bits
in the control vector correspoading to the boundaries have the value 0, and the remaining
bits corresponding to the interior points have tiie value 1. (See fig. 5(b).)

The STAR FORTRAN coding for the Brailovskaya method is given in appendix A, :

Vectorization of Method of Partial Implicitization §

Since the general equation for PI has the same form as for BR, it is againan ‘

2(1) vectorization and, hence, is optimal. In order to maintain an order of n2 vector-
iza.tmn for the method of partial implicitization, it is necessary to use equation (19) for the
computation of all the interior points. In the evaluation of K i,§ Li,j’ Nx,j’ a.nd O
appearing in equation (19}, the points c1 ,j+2 §1-2,] §1+2’J, and ( -2 are. needed
For § adjacent to the boundaries, these points do not exist; therefore two columns are
appended to the original grid points, one on the left side and one on the right side. Now
the vector contains an appropriate number of elements and thus equation (19) can always
be used without referencing nonexistent points. It does not matter what the contents of

the two appended columns are because, as noted earlier, for the points adjacent to the
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§ boundaries, equation (19) is modified as described by equations (20a) to (20d) so that the _
! terms containing the nonexistent points are multiplied by a factor of 0 or are reevaluated. .
} In the FORTRAN program, theterms D, E, G, H, K, L, M, N,and O areall

evaluated by using vector instructions of lengtn n2. Next, the modifications are made
according to equations (20a) to (20d). Some of the modifications can use vector instruc-
tions of length n, whereas others will be scaiar code. Then, equation (19) is computed
by using vector instructions of length n2.

The STAR FORTRAN coding uses vectors with the storage arrangement as shown in
figure 6(a), where the elements are stored consecutively by columns beginning in the lower
left-hand corner. All vectors have the same length even though they may not be filled
H completely. This is useful when computing subscripts because corresponding elements
' in the vectors have the same relative iocations. To compute each result, the twelve

closest points are needed in the equation. The results are computed in order beginning
; with Z(MC) and ending with Z{NC).

. e

A bit control vecior is ured to prohibit storing the results or the boundaries. The
bits corresponding to the boundaries and the two appended colurins have the value 0 and
the remaining interior bits corresponding to tae interior points have the value 1. (See
fig. 6(b).) !

The boundaries are computed as they are in Brailovskaya's method; therefore, the
code is not repeated in this example. Thz STAR FORTRAN coding for the partiai implic- }
itization method is given in appendix B.
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Vectorization of Alternating Direction Irnplicit Method by Repeated Tasks

As stated previously, the use of ADI gives rise to n different systems of equa-
tions, each tridiagonal and each independent of the results of the others. The task of
solving any one of these systems is serial in nature as evidenced by the recursive nature
of equations (13a) and (13b). However, it is possible to obtain a degree of parallelism by
noting that each task has n-fold repetitiveness in that the operations required to solve the
first system are repeated for the other n-1 systems. Therefare, by correctly arranging
the coefficients in storage, Thomas? 2lgorithm can be used in the vector mode, For
instance, if Ci is assumed to be a STAR vector composed of the following elements (see
tig. 7)
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and the same is done for Ai’ni’ then Thomas? algorithm can be used in the same form as 4
equations (13a) and (13h) except that each operation is now a vector operation of length n.
This vectorizzaiion is then on '5n(n) vectorization of an O(nz) task,

To actually implement this idea, one has to be certain that the coefficients that are
to be used as vectors are stored consecutively. Since the coefficients must be computed
and each is the result of an operation on elements of indexed arrays, it seems possible and
is desirable to compuie and store the coefficients by usirg vector operations,

In order to illustrate the importance of making the correct decision about data organ-
ization in vectorizing the proibems, consider the specific grid in figure 5(a) for n = 5.
Assume that the FORTRAN vector PSI and ZETA contain

PSI=[Vy ¥y V3o - o Vgl

ZETA = E;l, S Bgr- - o Sag]

and that the first step is implicit in the y-direction. Then, for example,

r )

At} | con Yag A
C; =| at] +| con *< Ysol -1 ¥16 k{
at| |con Yanl |¥gs
at| | CON Yaq Lw30

L. -J L - L_ ~)
where CON = Np, * At/4,

Aratp o

S e

However, none of these operations are vecior since the ¥'s in the operations indi-
cated are not stored consecutively. However, if the step is taken implicit in the
x-direction, the following computations for C, are obtained:

her e

[at] {coN " (109] Pz[/(B)_‘r]

B R L o T

at} | con w(11) ¥(9)
Cy ={at| -| CON| *( |p(12); - |¥(10)
At] | con w(13) Y1)

arj [cON| | jy(14)] v (12)] J
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All these operations are vector operations for ¥ stored as indicated. The con-
clusion is that for the assumed implicitness in the x-direction, it is necessary that the
two-dimensional array of ¢ and ¢ variables be stored by columns of the grid. The
opposite is true when the implicitness is in the y-direction. This last fact forces a
rearrangement of thke PSI array each time the direction is alternated. The rearrange-
ment is a fairly expensive task but is necessary in using this vectorization of the ADI
method. Note that in the discussion of Stone's algorithm, the opposite correlation between
direction of iinplicitness and direction of storage is desirable.

1t should be pointed out that the rearrangement of the vectors is not only expensive
computationally, it al~> could be slowed considerably because of the paging systera of
storage in the STAR computer. Information is brought from the disk to core in pages.
I, in one sweep, 2 row of vorticities is on one page, then a column is on many different
pazes. The necessiiy tn bring many pages in and out of core to reference a column repre-
sents an overhead to the rearrangement that is not shown in the vector timings and could
be quite significant.

The following commenis help to make the STAR FORTRAN coding for the ADI
method presented in appendix C more readable:

(1) By inserting just a small bit of logic and changing a few signs, essentially the
same code can be used for the solution in both directions.

(2) Two arrays DER1 and DER2 are used to store the i derivatives.

DER2(I) = PSI(I + 1) -PSI(I-1) *CON
DERI1(I) = PSI(I + N) - PSI{I - N) * CON

where, when implicit in x-direction,

NRe At

ON =
CON n

and when implicit in y-directicn,

NpeAt i

CON = -
4

Therefore, when implicit in x-direction,

Np_h At
- _Re ™
DER2(D) = ———— ¥, (@)
Np h At
DER1(D) = R°2 -y, (D)
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After the rearrangement of the Y vector for the implicitness in the y-direction

-Nph At
DER2() = —2&— ¢ (1)

T T

-N, h At
! DERL(I) = Rez — (D)

(3) When the ¥'s are stored by columns of the grid, the DER arrays do not
include the left and right boundaries. The tep and bottom values are computed only
because it is desirable to do the computation on long vectors (vectors which include all
1 the interior grid points).

E (4) All two-dimensional FORTRAN arrays are assumed to be stored consecutively
by columns so that when they are used in computation, only implied DO in the first index
generates vector code.

(5) Since Thomas' algorithm in the scalar form only requires A; ., Ci.rRit
after computation is finished with Ai’ Ci’ Ri’ it is possible to have just one A, C, and
R vector at each step of the algorithm,

e

(6) In Thomas!* algorithm, Qj and Pj are compuated with a division by wj. Since
vector division is slow compared with multiplication, the two divisions have been repiaced
with two multiplications by 1/ W

Vectorization of Alternating Direction Implicit Method
Using Stone's Algorithm

Stone has proposed a parallel algorithm (RD) for the direct solution of a tridiagonal
system of equations. He notes that in the factorization of the matrix A info the product
of a lower triangular matrix L and an upper triangular matrix U, the resulting equa-
tions are recursive and of the form x; = b.;x; ; + ¢;X; o for the factorization and
x; = bx; ; + ¢; for the forward and back substitutions. These operations involve O(n)
calculations when done serially. Stone uses recursive doubling to perform the calcula-
tions in logs n vector operations. Recursive doubling is the effective suldivision of
work in a task into subtasks which have similar form. A simple example is the calcula-

i tion of the sum of n numbers. This is merely X, in the sequence given by
Xyg=2ay; X=X 4 +tay where i=2,3,. . . n. The calculating sequence is illustrated

as follows for n = 4:

Initially,
E¥)
a .
x = a:
- .
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Step 1, H
ay 0 ay '
a a, +
=] %] P13
a3 29 ay +ag
» 24 23 ag +3ay
' Step 2,
-
ay | 0 2y
a, + 2 0 a, +
x={"1%2% | - 1 %2
ap+ag | ay+ay +ag
a3+a4J l_a.l+a2 a; +ag+ag+a,

The computation of the vector order of calculation provides some interesting results
and are presented here for the summation problem. Let n = 2, The first step of the
parallel algorithm is a vector add of lengih n - 1; the second step is an add of length
n - 2; the third step is an add of n - 4; and the kth steps is a vector add of n - ok-1
There are £ = log2 n such steps. Therefore, the average vector length is given by

£-1
= - k - ] 1 ] ]
Ny logg n k§=:o(n 2 ) oz, n[nl ( 2 )
"o (n1°g2“-n+1)=n(l°g2n-1)+1
logz : logz n

_ Now as n gets increasingly large, NA - n, Thus, the vector order of computation
is O, (log, n) for atask whichis O(n) serially. This means that work which is
] O(h log, n) is being done in the vector mode and, although each computation is being done
more quickly in the vector mode, there will be some value of n for which this approach
is not beneficial and can be beaten even with scalar coding.

Table I contains the estimated timing for the solution for one tridiagonal system
with N equations using scalar coding and recursive doubling., Scalar coding is seen to
be faster than the parallel algorithm for very small systems (N <32) and for very large
systems (N > 8192). This is not very surprising. For large values of N, the O(N logy N)
order of work in the vector mode takes longer than the O(N) scalar order of work. When
the vectors are short, the startup time for the vector operations is important and accounts
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for the ratio in that region. Even in the region where Stone's algorithm is faster, it is
only slightly better since once the vectors get long enough to make the startup less impor-
tant, the higher order of work is being felt. If is concluded that although the recursive
doubling approach is probably effective or a computer such as the ILLIAC IV, its advan-~
tages on the STAR computer are much less,

prrey

The recws,sive doubling formulas for the solution of the tridiagonal system are not
easily presented. A detailed analysis is presented in reference 7 as well as a FORTRAN-
like algorithm for carrying out the procedure. That algorithm has been used in appen-
dix D with the assumption of a capability of zere and negative indices.

v

1

An interesting feature of the vectorization process for this approach is that the
desired relationship between direction of implicitness and the storing of the variables is
the exact opposite from that desired for the RT vectorization. Here, since vector oper-
ations involve the coefficients of the particular tridiagonal system being solved, it is
desired that the unknowns for that line be stored consecutively. For example, in solving
implicitly in the y-direction, it is necessary that BSI= [\!11, Vogr ¥gre o o gll‘w]
because here the vector

Y )

CAL] ”CON] ,—:1/ . B ﬂ
16

at CON Y1 Py

“‘E
3
{
!
;
|
"z
:
:
3
!

c=At+CON*ﬁzp18-¢4$

: At CON Y19 Vg
: At CON ¥ v/
: N N N RS L N A 1
Sy and all computations involve STAR vectors for PSI as indicated.

Resulis of Vectorized Methods

Takie IV gives a summary of the vectorizations for the four methods. BR and PI
both wre optimal degree vectorizations. Of the two ADI vectorizations, clearly the \
ve storization using repeated tasks RT is better. Table V gives a summary of the
t:mings for the several vectorized methods. The graph of these formulas, as a function
of n, appears in figure 8. Since BR was the minimum for all n, each time has been
aormalized to a value of 1.0 for BR. Again, it should be emphasized that this graph

~eflects only the amount of time required to perform one step of the various algorithms
- .nd does not include convergence rates.

e o
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The graph retlects the following interesting concepts related to the vectorizations:

(1) The ratio of the two ADI methods to BR varies with r. This type of varia-
tion does not exist for a serial computation where the ratio is a constant. This variation
is, of course, due to the different degrees of vectorization obtainable in the methods.

(2) The greater values of RT, when n is small, are due to the poorer vectoriza-
tion in the method. Recall from an earlier discussion that the effect of the degree of
vectorization on timing is most significant when n is small,

(3) As n - «, the value of RT/BR becomes nearly constant. This constant is
just the ratio of the high-order terms in the timing. (See table V.)

(4) The ratio PI/BR is essentially constant since both PI and BR are a2
degree vectorizations,

(5) ST has the general shape of the tridiagonal timings computed earlier. When
n is small, ST is greater due to the weak vectorization (rylogz n). As n gets
larger, this fact becomes l:ss important, but then the inconsistency of the vectorization
(n2 Iogz n term) begins to dominate.

It is clear that RT would be superior to ST {for ail n regardiess of conver-
gence rates since they are vectorizations of the same method. The choice between the
others, of course, will be influenced by the total number of steps required to reach steady
state. Table VI presents the predicted normalized computer run time of the three best
vectorizations for the grid sizes for which the number of steps to convergence (table I}
are known. It is of interest to note that ADI, which was the fastest serial method, is
now the slowest with respect to the STAR computer. The PI and BR -+vectorizations
are the fastest and are nearly equivalent since the longer time per iteration of PI has
been offset by its fewer steps to convergence. It should be noted that if the trend shown
in table I in going from n =13 to n = 27 continues (that is, as n doubled, each method
took about four times as many steps), ADI with RT will approach the other two in
STAR timing since its vectorization becomes relatively better as n - ., (See fig. 8.)
However, as n gets large, the poor program locality referred to earlier becomes more
important even though it doesn't show up in the timings.

Althougt it is currenily impossible to say how important this effect might be, an
alternative is suggested for the ADI here to offset this effect should it prove to be large.
The poor program locality is caused by the need to transpose the vorticity and stream
function values, If this can be avoided, then so is the locality problem. It is recalled
from the discussion of the two ADI vectorizations that ADI with RT required
storage of the grid opposite to the direction of implicitness, whereas ADI with ST
required storage in the same direction of implicitness. The following algorithm may
be worth considering for the ADI: Let the grid be stored columnwise.
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(1) At step 2K + 1, let the implicitness be in the x-direction. Use the RT

vectorization. .
(2) At step 2K + 2, let the implicitness be in the y-direction. Then, use ST or

scalar solution of the tridiagonal system, or whichever tridiagcnal solver proves best to

solve each column individually. (Note that even with using the scalar code to solve the

systems, some vectorization is present since the coefficients in the matrix equation can

be computed in the vector sireaming made.)

(3) Go to step (1).

The necessity for the transpose has been removed and, hence, the locality has been
improved. Also, a costly operation (8n2) has been eliminated from the timings for the
method. The timing for such a method would be approximately the average of the two
ADI vectorizations minus 8n2 for the transpose operation.

CONCLUDING REMARKS

From the viewpoint of seeing as many facets of the vectorization process as pos-
sible, the following benefits were obtained from this study of a specified fluid flow
problem:

(1) Examples of optimal vectorizations (Brailovskaya's method (BR) and method of
partial implicitization (PI)) and the importance of control vectors in achieving this
optimality.

(2) Examples of two completely different approaches to vectorizing a sequential
problem (solving a series of tridiagrnal systems of equations):

() The first approach (ST) uses a new mathematical algorithm by Stone to
induce vectorization. It also demonstrates the effect of an inconsistent vectorization on
the STAR computer.

{b) The second approach (RT) takes advantage of the repeated and independent
nature of the task to obtain the vectorization using the usual serial algorithm. Both
approaches serve to illustrate the importance of data management.

(3) An example of a new method (that is, PI) whose theoretical properties are most
advantageous on the STAR computer.

(4) A feeling, in an order of magnitude sense, for the effect of different degrees of
vectorization.

(5) The dependence on the number of grid points of the relative efficiency of the
several methods,
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tion implicit method (ADI).

i Although it is not reasonable to draw global conclusions about results generated
from only one problem for only three different grid sizes, some conclusions can be

. reached about the three methods (BR, PI, and RT) for this problem. In a comparison
of the two stable (theoretically) methods, PI performed almost 2s well as ADI as
regards number of steps and since the vectorization is better for a small number of grid
lines in each direction and has no locality problems for a large number of grid lines in

i each direction, PI would be preferred. PI has a slight advantage over BR in the

! vectorized form but BR will be easier to adapt for less refular regions. However,
the theoretical stability characteristics of PI makes it an interesting method to con-
sider for use with the STAR computer.

‘ (6) A suggested approach to eliminate the locality problem in the alternating direc-
3

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., March 29, 1974,
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APPENDIX A
A STAR CODING FOR THE BRAILOVSKAYA METHOD

The program listiug for Brailovskaya's method is presented in this appendix and
uses an assumed FORTRAN-like language with extensions for vector operations.

C

C BRAILOVSKAYA M:oT HOE .

c

c A ONE-UIMENSIONCD VECTOR IS USED

c

C 0 RESULY VORTICITY VECYOR AT TIME, T

C ZBAR INTERMcUIATL RESULT VECTOR

C z RESULT VECTUOR AT TIMcy T ¢+ DELY .

c NSQ TUTAL NUMBER OF ELEMENTS IN VECTOR {(INCLUDES BOUNDARIES}

C N WHUM3ER CF cLEMAENTS IN oNe CCLUMN OF GRID

< BZ 817 CONTROL VECTOR wHICH PROHIEBITS STORAGE ON BOUNDARIES

c THt Z SAUNDARIES ARE COMPUTED FIRST, WHEN THE INTERICK I ELEMENTS
c ARE COMPUTLD BZ DOES NOT ALLCW THE NEW Z ELEMENTS TO BE STORED
c AT THE BIUNDARIEZS

c PSI STRELM FUNCTIGN VECTCK

c TEMP, T2y T3 ARE TEMPORARY VECTORS USED IN THE CALCULATICNS

C H =1/{N=~1}

c

DIMENSION ZINSQIs ZIINSQ)y IBAR(NSQ), PSI(NSO)y TEMP(NSO)
L o T2INSC): TairsSa)
BET BZINSQ) -

COMPUTE CUONSTANTS

o0n

H5Jd = H*H

CON1 = Db T/HSW

CUN3 = R * DELT/ {(4.0%HSQ)
CUNS = 2.0/

NM1l=N~-1

c
C CAMPUTE OFFSETS
c
c

3EGINNING SUBSCLRIPT
M3 = N+l
ML = N+#2
MA = N+3
MR =z MC+N

C ENDING SUBSCRIPT

NC = (N-1)*N ~ }
Nd = NC=-1
Nin = NC+1
Nr = NC+N
18 NC =N

1J9 CONTlNUE
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APPENDIX A -~ Concluded

C COMPUTE PSI
c

C EVALUATE BOUNDARY CUNDITIONS
282:2481) = =CuNS* PSI{2:NML)

NN = NA+2

Nl = NL+3

CENISNR) = ~CUNS* PSIA(NLINCY
IBAR(2:NML) = L{23NM1}
ZBARINNEINK) = ZINNINR)

NLML = N1-1

ZUMBINLIMLIN) =~CUNS*EST (MCINL2IN)
NN= 2%¥N

N1l = NN+l

ZENNSNAEINDY = CONS*(-PSI{NI:NC:N) + H)
IBAR(MBINLIMLIN) = Z({(MBaNLIMLIZIN)
ZBARCNNINAIN) = Z(NNINASN)

o

C EVALUATE TEMPURARY VELTGRS

o

T2IMC:NC)= PSItMASNA) ~ PSI{NBEINB]

T3{MC:NC) = PSI(MRINR) =~ PSIL23NL)

TEMPIMCING)® ZOIMC:INCY + LUNL* (2ZO(MR:INR} ~ 4-0*ZOIHC NC) + Z0{2:NL}
1 ¢ZO(HA:NA) ¢ ZU(MB:INB})

C COMPUT: INTERMcDIATL STeP
€

ZBARCMCING) = BZIMC:INC) JCTRLa. ( TEMP(MC:NC) — CON3* (T2(MC:NC)*
1 (ZI(MRINR}-ZUl2:nNL)} —T3{AC:NCI¥* (ZO(MAINA)-ZO(MB:NBI) }}

C COMPYUTE SULJUTION RESULT
C

LLIMCINC)Y = BLIMC:EINC) CTRL. { TEMPIMC:NCY! - CON3x (T2(MC:NC) *
1 {20AR{MR:INR)I~ZBAR{2INL) ) — T3{MLINC)I*{ZBAR(MA:NA)}-ZEAR(MBZNB)) )}
elD

Ay~ Sy

T nanl sl
T o MRl SOt sl nsp i F sy
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APPENDIX B :

A STAR CODING FOR THE METHOD OF PARTIAL IMPLICITIZATION

The program listing for the method of partial implicitization is presented in this
appendix and uses an assumed FORTRAN-like language with extensions for vector
operations,

HSQ = H*»2

' CON = R*¥JCLT = A /2.0

. F = —HSQ —-4.U*LILT

F32 = F*eQ

DXEAL2NC) = Ccun #= (PSTI{MRINR)} = PSI(ML:INLD)
DYEMSINCY = Cane % (PS5 {MashA) =PSTIMBIAB)}

: VIMC:INC) = OYU{MUENC) ¢ DELT
EUMCeNC) ==DY(ALINCY & DelT
GIMLNC) = OXUMCINL) ¢+ DELT

RIMUSNC) =—0X(H0ENC) + DELT
TEMPIMLME SNAML) =2 =H3O%® JCIMLM) 2ARML)

C

C COMPUTE CUSFFILIGNTS ANU TERMS USEC IN THE CENERAL EQUATION

c
DZELsNLPL)=D(ALINAY=ZO(2:NLPL)
CZAMRML sNgR)I =i (Ve 2MR ) *ZOtMRALINZF )
GLZIALPLINRPLYI=GIMLINR)I®ZLIMLPLINRFL)
HZIMLMLINRMLI=SHIMLINR ) * 2L (ALML SANRML)
ARLACINCY = TUmMPAASINAY —C2UMLPLIENLPLY = EZ(MKPLINRPLY- GZIMZ2AIN2AY}
ALCHMUENT) = ToMP(MLIHL) =~LZ4(M2L3N2L) —~GZIMLPLINLPL) —~HZ{MLMLINL™L)
ANIMUENC)Y = T MP(MRINK] —LZIM2R212R) —GLIMRPLINFPLY ~HZ(MKMLINEML)
aM{A4CINC) = T.MP{MC:INC) ’
JIMCINC) = Feabrimdzad) — JLIMLMLINLML) —CZ{MPMLIENRML)~ HZI{M2R:INZB)

[
DLIMUEAR)Y =DlaLs ) =2 {MLINC)
HolalaNL) = 402 Ma) =6 lMbING)
DENIAIMLUINCYI= D lMRIMNR) + HUO(MC:INCY ¢ DEIMCINC ) + HGIMAZNAY)
ANUMIMCSN L) = Al A0HC) ®E{MLINC ) + AC(MCINC ) *HIMCINCI+ALIMOINC) *DIMCINC]
L+ af{MCENLI*E (1o sRC)

[

C CUMPJUTL CUSFRILIINTS FUR THE PUINTS ACJACENT TO THY BCUNDARIES

C (TWO-DIM_MSIunal NOfaTIoN IS USFD HERE FIR t£SIER READING)

[

C FOIJR LUKJILRS

c TupP LLFT

AMIN-193)= 2A(iN=193) ~GIN-Le3)¥Z0(N,3) —U(N=1,3}%2C(N~-1,2)
Gti-le3)=0.0
DEN~-1+3)=0.0

[ T XIGHT
AR{N=L192)= 3A(N=LoN) =GIN=-Len} *ZO(NgNJ ~E(N~LyNI*XZC(N=L,N+1)
SElh~1ol) =uel

C BUTTNAM LEZFT
AM(293)= AA(2:3)-D(2y3)*2U(2,2) ~H{2:,2)%2011,3)
00243)=0.2
H{2+3)=0.90
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APPENDIX B -~ Continued

THL £ BOUNDARIES ARE COMPUTEC FIRST, WHEN THE INTERIUR Z ELEMENTS
AFE COMPUTZO 8¢ UGES NOT ALLOw THe NEW Z ELEMENTS TO BE STORED
AT The BOUNDAKLES

i c
§ c METHOD OF PARTIAL IMPLICITIZATION 1
- s c

C  ONE-DIMENSIOUNED VECTOR IS USED %
c
€ Z0  RESULT VORTICITY VECTOR wl TIME, T ¢
c 2z RESULT VECTOR AT TiMg, T + CELT {
C N NUMBER UF ZLEMENTS IN ONE CCLUMN GOF GRID i
c me TOTAL NUMBEK OJF ELFMENTS IN VECTOR = N#%2 + 2N |
c UINCLUDES UOUNDARIES AND APPENDED COLUMNS) :
c Pst STREAM FUNCTIUN VECTUR §
C H =1/(N~1)
C  DXyDYyUsEsGsHsTEMP yAKsALy AM ANy () g DENGM 4 ANUM TEMPORARY VECTORS USED AS
c TERMS IN ThE GEMEXAL EGQUATICN
c 74 BIT CANTRUL VECTUR WCHICH PROHIBITS STORAGE ON THE BOUNDARIES
c
c
c
c

DIMENSION ZUNZ) s £2D(N2) s TEMPUINZ ) 9 DY N2V DXIN2) s DIN2) +EIN2) s GIN2),HIN2)
L ARINZ2) o al U2 ) e aMUNZ) y ANLN2) 2O (12) s DENOMINZ ) o ANUMINZ)

L sUZIN2)sS2UN2IoOGZINL) +bZIN2) 9 CEIN2)4HGIN2)

BIT BZiN2)

P
I L ace Tiid

C COMPUTE JFFSLTS
[
C BZGINNING SUBICRIPT
Cc
MC = 2uNeg
Mo = M(C-})
MLPL= MA-N
ML = MC-N
MLMLl= MB-N
MRML = Mo#N

cINL SUBSCRIPT

Oooon

NC = N*%Z2 ~ 2
NA = NC+]
NR = MNCHN
W2 = RN
NRPL= Nr+l
NRMLI= Na-1
NLPL= NL+1)
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APPENDIX B - Concluded

c BUTTIM RIGHT . :

AMIZ2oNI= aHM{2yN)= EL2yHI*ZT(29 N1 )= RIZ2,N)*I01 LN+ 1)
El2sv Iz

dl2en  ETY Y]

Cl """"M

c

t

4

!

C BOTTUM PJIINTS AUJWCANT Td BUUNCARY  AND TGP !
¢ {
Y

DO 200 J=4,4-1
AM(2¢d) = Adl290) ~HI2,3)% 2D(14d) ,
HU2¢d) = Qo0 :
AMIN=L14d) = A8{N=1,d) = GiN=Lsd) *Z0(N, 3}
GIN=Lyd} =0.0 s
200 CONTINUZ | :

g e T

c
C RIGHT AND LEFT PHIINTS ADJIACENT TG SCUNDARIES
c
00 210 I=3,N-2
AMILy3)= AN(GLe3) ~D(1,3)%0(1:+2)
O(lesd)=0.0
AMULaND= AMULanNI~ ELS4NI*LUTLI4N+1])
E{LsNI=0.0
210 CUNTINUE

c
€ COMPUTZ GiNeRZL EQUATION
c

LZOMCENC)=B2{MC ) oCTRLL((F*AM{MCINCI-ANUMIMCSNCI )/ (FSQ-DENQM{MCENC)})
eND

- et r—— WAV
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A STAR CODING FOR THE ALTERNATING DIRECTION i
IMPLICIT METHOD BY REPEATED TASKS .

The program listing for ADI by repeated tasks is presented in this appendix and
: uses an assumed FORTRAN-like language with extensions for vector operations.

AUl BY REPZATED TASKS

PSi STRELM FUNCTIUN VECTOK

y'A VORTICITY VECTOR NLW CuMPLTING

DERLyDERZ PSI ULRIVATIVL VECTCRS

AyBsCeD COUEFFICINTS IN MATRIX EQUATICN
3 IS A CLHSTANT

Gy Fan TcdP VECTUORS AS IN THOMAS ALS

T T24PJRARY FOR VORTICITY

N NUMBcR OF INTZRICR MESH PTS IN 1 LINE
R REYNULDS KUMBER

H SPATIAL GR{J SPACING

oT TIA4E STEP

DIMENSION PSI (MaM)pZ(My M} DERLIMyN), CER2{M,NT,
L ACND yCEit () gWIN) gF(N=14N) ¢ GIAsN) s TINyN?
¢ LOGICAL CELwISE

HSQ=ri%H

CUN=QT*R/%.

CUNL==2./7HSQ

B==2.%0T=HS5Q

NPl = N#1

HzN+2

M L=nN=-1

CINE= 2.*UT-HSQ

P COLWISE=uT.

aoacoaQaOaOanQanannn

COLWISE=.Te IMPLIES PSI,Z STORECD BY CCLS OF GRID
THISIMPLICET IN X-DIRZCTION
Ll CONTINUL

CUMPUTE RBJIUNDARY VALUES UF £
LF («MCT. COLWISE) GO TU 10O

P5IsZ STURzZD &Y GRIJ CuULS
Z{2:nPLy 1) RSFERS TU FIRST CRIC COLUMMA

OO0 o000 000

ZE23NPLy L) =CONL*PSTI2:NPLy2)
2L 22NPLaM)=CuUnl®=PSI{2:3P L NPLY
DO 5 J=2y NPl
ZOLsd)=CLNL*PSI(2:4)

S5 ZiMed)=—LuNLE(H=-PSIN{NPL,J))
GY TJ 9
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f APPENDIX C - Conclided
i 1O CUNTINUE -
§ c
- : c PS1s2 STURLJ 8Y GRIU RUWS
c ZU23NPLy L) R=FERS TQ FIRST GRIN RCW
¢

LL23NP Ly L)=CINL*PSI(2:NPLy2)

ZL2:NP1 gM)==CUNL* (H=-PSI(Z:NPL,NPL)})} "

DU 4 J=2,NPL

L1y 31=CUNL® PSE(2,43)

i : 4 Z(Med)=CUNZE® PSL{NPLsJ)

: [ > CONTINUWE

: DERLCIZMEN)=(PST (2% M+ 1 M*M)~-PSTI(1MENM=2%M })%CUN ’
: DuRZ(LMeN)=(PSE( M2 A*M-M+ L)} -PST (HeMeM=M-1) }xCON \

S n

IF CULWISE sULRE=(R*¥OT*H/2)*D/DX(PS])
IF NUT CULWISCDERL=-(R*DT=H/2)*D/DY(PSL)

oy T

BEGIN TRI-Dlas ScTuP AND SOL

(2l aNeNaNalal

CON3=1./8
‘ WlLl:N)=CON3
VLN =Z02:4P Ly 23%CUON2 & Z(33M,2)*(~DERL{2:N+1-22-DT)
! 1 #20L2Ns2I*{DCRII2INPLLI)-DT I=L{23NPLel) >t UER2IZ2:NPL,124DT)
GELsN,L)=D(LeN)*A{L2N)
DO L J= LeNML
Cllsnd= DI=DLh2{2:MPLyJ )
FOLeNsJd) =C(lNi=wi{lznN)
DELNISZL2:NP Ly d+2)*¥CIN242{ 33 My J+ 2} (-NERI(2INPL4J+1)-0DT}
i +Z0L2Na J#2)*%UERLI{2ENP L 2 +1)-0DT)
el 3 o00e NeALE D{Lsd)=0lLlan}=Z023NPL M) ®({=DEP2{22NPLNI+0T}
ALzl =0T 2 0ERLE(2:NP Ly U+ 1)
ToerdP= B="4(123)2F{LiNyJ)
WllenN)=1e/T-MP (L3N}
GULNyJ+1 =Dl 12N} ~ALLsNI*GUILINI ) I*nT1N)
P CONTINUE .

BEGIN BATK SUBSTITUTIUN

[aNaNal

TULaasN)= GLsNyN)

DU 2 Jrlanvl

L=z N-J

LPl =L+] >
2 TULlaNgLl= GULIN,LI-F{Ll2NyL) * T{L1:N,LPL)}

RE arRR ANGE 2

[ X ala}

DO 5 I =2,nNrl

3 Z(2:NPLl,y )= T {(1sL12N}
COLWISE= .nOTe COLWISE
CON=-CUN

IF CUN 6T O TeST FIR CCNVERGENCE
CALL PUISSON SULVER T3 GET FPSi

[zX2XaXgl

GO 70 11
END

e e
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T i L APPENDIX D
1 ' A STAR CODING FOR TEE ALTERNATING DIRECTION
IMPLICIT METHOD USING STONE'S ALGORITHM
i
The program listing for ADI using Stone's algorithm is presented in this appendix
: and uses an assumed FORTRAN-like language with extensions for vector operations.
c
c
X c ADI BY STUNLS R=ZCURSIVE DJUBLING
c
} c PSSt STRewmM FUNCTIUN VECTUR
< Z VOXTICITY VELTOR NCw COMPUT ING
! ‘ c DERLeDERZ PSI vzRIVATIVE VELTORS
( c AsbsC D CUCFFICINTS IN MATRIX EQUATICN
1 c . B IS A CONSTANT
c T TEMPURAKY FUR VORTICITY
c QIsQIMLOIM2,AC TEMPY X, Y TEMPURARY < ECTORS NEEDEC fOR
o RcCURSIVE DCUBLING
c 4 UPPER UIAGUNAL 3F FACTURSED MATRIX
c URECLIP  RECIFRICAL UF EACH ELEMENT IN LOWER DIAGONAL
OF FACTURID MATRIX
c N NUMBzR UF INTERIQOR MESH PTS IN 1 LINF
c R REYNILOS NUMBER
c H SPATIAL GRIV SFACING
c ot TIMZ STEP
DIMINSIUN PSI(MyM) o2y M) ,OERL{INMyN)y DERZ(M,N],
L AR s CUNI s OINY s ACIND s QILND)»QIMLLOIN) 4 QIM2{-132N) s TEMPIN)
2 URECIPINI»MINI o XIN)»Y N}y TINJN)
REAL M
LOGICAL COLAISE
HS Q=H*H
CON=OT*R /4.
CUNL==-2./HS2
NPL = N#1L
Mz N+2
Ml=n-1
B==2.%DT-HSQ
BSQ= 8*8B
CuNZ2= 2.*%DT-HSQ
COLNWISE=.T. .
C
c COLWISS=.T. IMPLISES P51, STCRtD 8Y CCLS OF GRID
c THUS IMPLICIT 1IN Y-DIRZCTION
LT CONTINUZ
C
c COMPUTE BOUWDARY VALUES GF Z
c
IF («NDT. CIUWISE) SU TO 1O
c
c PSIsZ STUKEU 3Y GRID CO:LS
c 282:0PLls 1) neFExs T FIRST GRID CCLUMA
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APPENDIX D — Continued

raeercrr

:
[ .- i=1
F ' 21 CUNTINUE
I=I+1

3 IFC 1 .GTe. N/2) GO TU 22

TEMPLII-1:N)=Ql {I~-1:N}*QIML{OsN=~I+1]}

1 FACELSN—-T+#2)#QIM2{I- 12N DI*Q IM2(—12N~1)

QIMLIESN) = QICLEN)*CIMLIOSN=I) #AC{LN~T¢1)*QIM2{~-13N-I-1)

i *QIMLI{T 2N

QIMZ (I-1:N) =TEMP(I-1: N)

QIC [+1: N)= BRI 4LL{IsN—L)+ACCI+1N)I*CIM2(I-12N-2)

GO0 T3 <l
22 CONTINUL
f URELIP(Z2:N)=QULN-11/Q02:2K)

ME2: NI=AL2:N)=JRECIP(LEIN-1)

FORWARD SUUSTITUTIUN

aoon

Yilsul= D(L:N)

TEMP{2:N)=-M(2:N)

’ 1=1

: § 20 CUNTINUE

: IF{ [.GTs N/2) GU TO 30

' YOI+LeNb=Y{I+12)+ Y(LIN-T)}*TEMP(I+12K])
. FTEMPLE#LIINI=T AP (T +#12NI*TEMP(LIN-])

' I=1 +1

' Gy T3 20

baAChn SUBSTITUTIUN

[a XX gl

30 COUNTINUE
X(LsN}= Y{L:N)*URECIP(L:N)}
TeMP{LlsN=-1)==-C(1l:n=11*UKECIP(1:N])
I=1

40 CuNTINUC
IFt I «6T. W) GO T2 50
X{Llsn=Id= X{lsin=1)  X{I#Ll:N)*TE#P(Ll:N=])
TEMPULsN=1)= TceMP{LaN=-1) * TEMP (I+1:N)
I=1 +]
Gy 10 4V

50 Tllsnedi=X(13N)

INTERCHALG: R3WS AND CULS

[a¥ X o)

DG 4 T=2,nP1
3 Z02:M=140)= T{I=1,Lz2%)

! ZE23NFPLy ) =CONL=*PSI(22NPL2Y
LU2INPLyMI=CORL®PSTIL2INPLsNPL)
00 5 J=2,nPL
i1y )=CLNLXPSIL2,J)
5 Z{MsJ)=-CCONL*(H=-PSININPLl,J))
oy TJ) 9
LO CONTINUE

40
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APPENDIX D — Concluded

PSI+Z STOREU &Y GRID AUWS
Z42:\PLly 1) ROFERS TJ FIRST GLRID RCHW

ZL23nP Ly L)=CONL%PSI(2:NPL,2)

ZE23NPLyM)=~CUONL* [H=-PST{23NPL,NP1]}}

DI 4 J=2,hP1

ZULe3)=CON2* PSI(2,3)

L1V )=CNZ* PSIINPL,J)

CONTINUC
DERLIILMEN)={PSI(2¥M+1zM*M)=PST {1 :NeM=-2%M ) )*CON
DER2ILMEN)={PST IMF2IMEM =M+ 1 )}=PSI{MIMIM=M=]1 }>»CON

IF CULHISEDERL={R*UT*H/2)*D/0X(PSI)
IF NJUT CULWISE yDERL=~(R*OT*H/2)3D/0Y(PST)

BEGIN TRI-O1AG SETUP AND SOL

D0 1 Js=1lsN

JPLl=g+l

JP2=4+2

QELINY=Z(2:NPLyJPLI*CUNZ +Z(Z2:NPL,JP2)*(DER(2:NP1,4}-0T}
1 +2{2:08PLl 43 )% (=DERZ(23NPL,» J)-DT)
Q{LIsD(LI=Z{Ls JPLI®(-DLR1I(2+,J}¢LT)
VL) =0INYI—~ Z{MJPLI*{UERLINPL,J)}+ET)
ClLl NML)=OT +D:RL1(2:N,J)}

AL Z2:N)= UT= DIRLE3 NPL,J)

ACL{23N)=z =Al2:nN)I*C{1lnML)

AC(1L)=0.

QiM2{-1: NI=1,

QIAL{1sN)= o

QIMI(Ol=1.

QI ¢ 2:N) "= 8SQ + AC(2: N)

QI{l) =8

BEGIN FACTURIZATION

COLWISE= «NOT. CULWISE
CON==CUN

IF CUN GT O TEST FUR CCNVERGENCE
CALL PGISSUn SULVER TO GET PSI

Gu TI3 11
END

41
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‘ :
: TABLE L- SERIAL COMPUTER RESULTS
|
: Number Time steps CDC 6600 CPU Total
\ Method| n time normalized by time per step, | CPU time,
: steps ADI time steps sec sec
; 13 136 2.83 0.0165 2.24 X
i BR | 20 414 3.23 .037 15.32 -
T 27 560 2.86 .065 36.4
* 13 57 1.19 0.036 2.05
PI |20 152 1.19 .083 12.62

27 223 1.14 .142 31.67 -

13 48 1 0.018 .86 ’
‘ ADI | 20 128 1 041 5.25
‘ 27 196 1 .075 14.7

13 34 0.71 0.39 13.3

FI |20 86 .87 1.81 155.7
27 { Not computed

M
[
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{
g TABLE II.- ESTIMATED TIMINGS FOR STAR
p f 64-BIT VECTOR OPERATIONS 3
. _ i
< Operation Time in clocks 4
S Add, subtract 33 + 121 ,:
§ Multiply 38 + ' k.
i Divide 87 + 2 k
£
i { Transmit 30 + l§: b
[ 4 s
: Transmit index list 34 + 8 '
¥
N
; 4
r {
1
X TABLE II- RECURSIVE DOUBLING AND SCALAR TIMINGS ;
FOR TRIDIAGONAL SYSTEM _ﬁ
1 Recursive doubling: :
) Tpp = 15N, logy n + 9.5n - 10N, + {51 logy n - 3 ’
Scalar coding:
e B
Tg = 190n
n 8] 16| 32| 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192 | 16384
logon |3 {4 |5 |6 (7 |8 |9 10 11 12 13 14
TRD/TS 1.5} 1.1] 0.86] 0.72] 0.67| 0.66] 0.70| 0.75| 0.81] 0.88 | 0.95| 1.03
}
]
' 44 ;
; 3
; f.
. i
[ B ;
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TABLE IV.- SUMMARY OF VECTORIZATIONS

Method Order Degree
0o 2
BR onz(l) n
PI 0,2(1) n?
' ADI using 0, () n
i repeated tasks
. ADI using O _(nlog, n nflog, n
; Stone's algorithm n( 2 ) flog
!
: 45
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|
{ .

2 .
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! . .
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: [ ]
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| |
»
] TABLE V,- TIMINGS FOR THE VECTORIZATIONS ! “‘
' 1 i
§ Number of vector operations and length of vector i ;
; Formula for P
! Method STAR time Add Transmit P
| in clocks J Length| Multiply |Length [Divide| Length| Transmit | Length{ indexed |Length .
§ subtratt Hst ;
f |
| 2 ©on
: BR 15.5n2 + 799 15 n? 8 n . 11
' 2 2 n 2 n 2 n .
. 4 09 -
PI 29.5n° + 4n + 17 2 n2 14 n 1 n? 1 n?
2 on n 8n n n’| n n n 3
! . 22 142
RT 25.5n° + 722n + 2 nz 9 nz §
2 n n n n n a 4n n n n
150N , logg n + 25.5n . 2 R 2 | ;
8T |- 100N, + 65Inlog, n
A 2 2n logy n Ny 4n logy n Ny n(logz n- 1) N, borand
+ 305n + 142 s (1 l) N 8n(mg . l) N . !
mogy " A 2 A o
o
. ] :;
— CoA
by
;
k
{
-t
N
ey o s b e = R - - oL . o e . e e . w . st —_— —4‘“# . i
' - , r— - e - R R
o U |
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TABLE V1.- PREDICTED NORMALIZED
STAR COMPUTER RUN TIME'

n BR Pl ADI with RT
13 136 113 192
20 414 295 448
27 560 430 612

tAll entries = (No. steps) * (Normalized
time per step)
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(a) Grid arrangement. (b) Bit control vector.

. 5.- Grid arrangement and bit control vector for Brailovskaya's method (BR) for n = 5,
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